Higher-rank Numerical Ranges and Dilations

نویسنده

  • YUAN WU
چکیده

For any n-by-n complex matrix A and any k, 1 ≤ k ≤ n, let Λk(A) = {λ ∈ C : X∗AX = λIk for some n-by-k X satisfying X∗X = Ik} be its rank-k numerical range. It is shown that if A is an n-by-n contraction, then Λk(A) = ∩{Λk(U) : U is an (n + dA)-by-(n + dA) unitary dilation of A}, where dA = rank (In − A∗A). This extends and refines previous results of Choi and Li on constrained unitary dilations, and a result of Mirman on Snmatrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher rank numerical ranges of rectangular matrix polynomials

In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...

متن کامل

GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...

متن کامل

Constraint Unitary Dilations and Numerical Ranges

It is shown that each contraction A on a Hilbert space H, with A + A I for some 2 R, has a unitary dilation U on H H satisfying U + U I. This is used to settle a conjecture of Halmos in the aarmative: The closure of the numerical range of each contraction A is the intersection of the closures of the numerical ranges of all unitary dilations of A. By means of the duality theory of completely pos...

متن کامل

Some Results on the Generalized Higher Rank Numerical Ranges

In this paper, the notion of rank−k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for > 0, the notion of Birkhoff-James approximate orthogonality sets for −higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural general...

متن کامل

Higher-rank Numerical Ranges and Compression Problems

We consider higher-rank versions of the standard numerical range for matrices. A central motivation for this investigation comes from quantum error correction. We develop the basic structure theory for the higher-rank numerical ranges, and give a complete description in the Hermitian case. We also consider associated projection compression problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007